FORM TP 2004247

TEST CODE 02134032

MAY/JUNE 2004

CARIBBEAN EXAMINATIONS COUNCIL ADVANCED PROFICIENCY EXAMINATION

MATHEMATICS

UNIT 1 – PAPER 03/2

 $1\frac{1}{2}$ hours

21 MAY 2004 (p.m.)

This examination paper consists of THREE sections: Module 1.1, Module 1.2 and Module 1.3.

Each section consists of 1 question. The maximum mark for each section is 20. The maximum mark for this examination is 60. This examination consists of 4 pages.

INSTRUCTIONS TO CANDIDATES

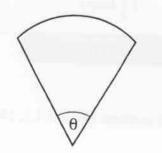
1. **DO NOT** open this examination paper until instructed to do so.

2. Answer ALL questions from the THREE sections.

Unless otherwise stated in the question, all numerical answers **MUST** be given exactly **OR** to three significant figures as appropriate.

Examination Materials

3.


Mathematical formulae and tables Electronic calculator Graph paper

- 2 -

SECTION A (MODULE 1.1)

Answer this question.

- (a) The expressions $x^3 7x + 6$ and $x^3 x^2 4x + 24$ have the same remainder when divided by x - p. Find the possible value(s) of the constant p. [7 marks]
 - (b) The figure below (not drawn to scale) shows a piece of wire 40 cm long formed into the shape of a sector of a circle of radius r cm, and angle θ radians.

(i) Write down an expression for the perimeter of the sector in terms of r and θ , and hence, show that $\theta = \frac{40 - 2r}{r}$. [3 marks]

(ii) Show that the area, $A \text{ cm}^2$, of the sector is given by $A = 20r - r^2$.

[2 marks]

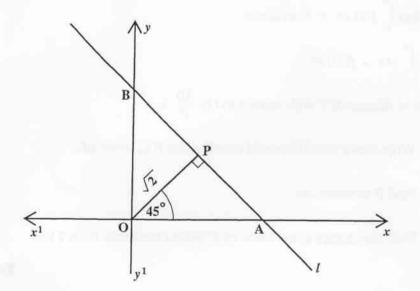
(c) Solve the pair of simultaneous equations

 $x^2 + xy = 3$

y - 3x = -1

[8 marks]

Total 20 marks


1.

Comparison of a second se

SECTION B (MODULE 1.2)

Answer this question.

In the diagram below (not drawn to scale), the line l cuts the positive x and y axes at the (a) points A and B respectively. The perpendicular from the origin O meets l at P, $OP = \sqrt{2}$ units and $P\hat{O}A = 45^\circ$.

	(1) Find the coordinates of P .	[3 marks]	
	(ii) Show that the equation of l is $x + y = 2$.	[3 marks]	
(b) ,	(i) Express $\sin 4\theta$ in terms of $\sin 2\theta$ and $\cos 2\theta$.	[1 mark]	
	(ii) Hence, solve the equation $\sin 4\theta = \cos 2\theta$ for $0 \le \theta \le \pi$.	[5 marks]	
(c)	The roots of the quadratic equation $x^2 - 4x + c = 0$ are the complex number $2 - i$. Find the value of the constant c .	oers 2 + i and [2 marks]	
(d)	The position vectors of two points A and B are $2i + 3j$ and $3i - 8j$ respectively. D is the midpoint of AB and the point E divides OD in the ratio 2:3. Find the position vector of E.		

Total 20 marks

[6 marks]

2.

SECTION C (MODULE 1.3)

Answer this question.

3.

-4

(a)		uate $\lim_{x \to -2} \frac{x^3 - 4x}{x^2 + 5x + 6}$.	[6 marks]
(b)	Diffe	erentiate, with respect to t, the function $\frac{t^4 - 2t^2 + 1}{2t^2}$.	[4 marks]
(c)	Give	n that $\int_0^4 f(x) dx = 6$, evaluate	
		$\int_0^4 (4x - f(x)) dx.$	[3 marks]
(d)	The r	rate of change of P with respect to t is $\frac{10}{t^2} + t$.	
	(i)	Write down the differential equation for P in terms of t .	[1 mark]
	(ii)	Find P in terms of t .	[3 marks]
	(iii) [.]	Find the change in the value of P when t increases from 2 to 4.	[3 marks]
			Total 20 marks

END OF TEST