A March

FORM TP 2007246

TEST CODE **02134010** MAY/JUNE 2007

CARIBBEAN EXAMINATIONS COUNCIL ADVANCED PROFICIENCY EXAMINATION

PURE MATHEMATICS

UNIT 1 – PAPER 01

2 hours

(18 MAY 2007 (p.m.))

This examination paper consists of THREE sections: Module 1, Module 2, and Module 3.

Each section consists of 5 questions. The maximum mark for each section is 40. The maximum mark for this examination is 120. This examination paper consists of 6 pages.

INSTRUCTIONS TO CANDIDATES

1. **DO NOT** open this examination paper until instructed to do so.

- 2. Answer ALL questions from the THREE sections.
- 3. Unless otherwise stated in the question, any numerical answer that is not exact **MUST** be written correct to three significant figures.

Examination materials

Mathematical formulae and tables Electronic calculator Graph paper

Section A (Module 1)

Answer ALL questions.

1. Given that x - 1 is a factor of the function $f(x) = x^3 + px^2 - x - 2$, $p \in \mathbf{R}$, find

- (a) the value of p [2 marks]
- (b) the remaining factors of f(x).

[4 marks]

[4 marks]

Total 6 marks

2. (a) Solve, for x, the equation
$$(3^x)^2 = 27^{(x-2)}$$
.

(b) Express
$$\frac{5-\sqrt{3}}{2+\sqrt{3}}$$
 in the form $x + y\sqrt{3}$ where $x, y \in \mathbb{Z}$. [5 marks]

Total 9 marks

3. (a) The diagram below (not drawn to scale) shows the graph y = f(x) which has a local maximum point at A (1, 3).

Determine the coordinates of the maximum point on each of the following graphs.

(i) y = f(x) - 2 [2 marks]

(ii)
$$y = f(x + 3)$$
. [2 marks]

(b)

(i)

The function, f, is defined on **R** by $f: x \rightarrow 3x - 2$.

Show that *f* is one-to-one.

[2 marks]

(ii) Hence, or otherwise, find the value of $x \in \mathbf{R}$ for which f(f(x+3)) = f(x-3). [4 marks]

Total 10 marks

GO ON TO THE NEXT PAGE

- 4. (a) Solve |x-4| 6 > 0 for all $x \in \mathbb{R}$. [5 marks]
 - (b) Find the real numbers u, v and w such that $-3x^2 x + 2 \equiv u(x + v)^2 + w$. [3 marks]

Total 8 marks

5. Solve the following pair of simultaneous equations.

$$x^{2} + xy = 2$$

$$y + 3x = 5$$

[7 marks]

Total 7 marks

Section B (Module 2)

Answer ALL questions.

In the diagram below (not drawn to scale), the points A(7, 3), B(1, -4), C(-5, -1) are three vertices of a quadrilateral *ABCD*. The line *BD* is perpendicular to *BC* and *M* is the point of intersection of the lines *AC* and *BD*.

(a) Find the equation of

- (i) the line AC
- (ii) the line BD.
- (b) Hence, find the coordinates of *M*.

- [3 marks]
- [3 marks]
- [3 marks]
- **Total 9 marks**

GO ON TO THE NEXT PAGE

6.

7.

(a) Express $\cos \theta - \sin \theta$ in the form $R \cos (\theta + \alpha)$ where $R, \alpha \in \mathbf{R}, R > 0$ and $0 < \alpha < \frac{\pi}{2}$. [5 marks]

(b) Hence, find the general solution of $\cos \theta - \sin \theta = 1$. [3 marks]

Total 8 marks

8. The circle in the diagram below, not drawn to scale, has centre O and the acute angle $AOB = \frac{\pi}{6}$ radians. OA = 6 cm and C and D are the midpoints of OA and OB respectively.

Express in terms of π

(a) the length of arc AB

(b) the area of the shaded region *ABDC*.

[2 marks]

[4 marks]

Total 6 marks

9. (a) Given z = 4 + 3i, express $\frac{\overline{z}}{\overline{z}}$ in the form a + bi where $a, b \in \mathbb{R}$. [5 marks] (b) Find $\left|\frac{\overline{z}}{\overline{z}}\right|$. [2 marks]

Total 7 marks

GO ON TO THE NEXT PAGE

02134010/CAPE 2007

- 4 -

10.

(a)

The position vectors of points A and B with respect to an origin O are given by $\overrightarrow{OA} = 3i + 2j$ and $\overrightarrow{OB} = 2i - 4j$. Find

- (i) \overrightarrow{AB} in terms of *i* and *j* [2 marks]
- (ii) the magnitude of \overrightarrow{AB} [2 marks]

(iii) the position vector of the point M that divides AB internally in the ratio 1:2. [3 marks]

(b) Determine whether \overrightarrow{OA} is perpendicular to \overrightarrow{OB} .

Total 10 marks

[3 marks]

Section C (Module 3)

Answer ALL questions.

11. (a) Determine
$$\lim_{x \to -2} \frac{x^3 + 8}{x^3 - 4x}$$
.

(b) Obtain the real values of x such that the function

$$f(x) = \frac{x^2 + 1}{(|2x - 3| - 9)}$$

is continuous.

[4 marks]

[4 marks]

Total 8 marks

12. (a) Differentiate, with respect to x, the function $f(x) = \frac{x^2 - 4}{x^3 + 1}$. [4 marks]

(b) Using the substitution $u = \sin 2x$, or otherwise, evaluate $\int_{0}^{\frac{\pi}{4}} \sin 2x \cos 2x \, dx$. [4 marks]

Total 8 marks

GO ON TO THE NEXT PAGE

13. The curve $y = px^3 + qx + r$ passes through the origin *O* and the point *P*(1, 2). The gradient of the curve at *P* is equal to 8.

(a)	Calculate the values of the constants p , q and r .	[6 marks]
(b)	Obtain the equation of the normal to the curve at <i>P</i> .	[2 marks]
		Total 8 marks

14. For the function $f: x \to 12x - x^3$, determine

(a)	the stationary points	[4 marks]
(b)	the nature of EACH of the stationary points.	[3 marks]
		Total 7 marks

15. In the diagram below (not drawn to scale), the line y = 2x + 3 cuts the curve $y = x^2$ at the points P and Q.

- (a) Determine the coordinates of P and Q. [4 marks]
- (b)

Calculate the area of the shaded portion *POQ* shown in the diagram above.

[5 marks]

Total 9 marks

END OF TEST