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Section A (Module 1)

Answer BOTH questions. &

Solve the simultaneous equations

12+xy=6
x-3y+1=0. - [ 8 marks]

The roots of the equation x> + 4x + 1 = 0 are o and B. Without solving the equation,

G)  state the values of @ + B and of [ 2 marks]
(ii) find the value of a® + B2 { 3 marks]
i) find the equation whose roots are 1 + L and 1 + -“5- { 7 marks]
Total 20 marks
"
Prove, by Mathematical Induction, that’=zl r=gn(n+l). [10 marks)

Express, in terms of # and in the SIMPLEST form,

. ) o
@ "_Elr - » ) { 2 marks]
- A\
zn N
@) 2 \ ' { 4 marks]
r=n+1 )
Findnif 2 r =100. ‘ : [ 4 marks]
r=n+l
Total 20 marks
)
GO ON TO THE NEXT PAGE
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Section B (Module 2)

Answer BOTH questions.
3. (a) (i)  Find the coordinates of the centre and radius of the circle X%+ 2x + y* - dy = 4.
[ 4 marks]
(ii) By writing x + 1 = 3 sin 0, show that the parametric equations of this circle are
x=-1+3sin0,y=2+3cos 6. [ 5 marks]
(ii1) Show that the x-coordinates of the pcints of intersection of this circle with
thelinex+y=larex=—1i%‘[§ [ 4 marks]
) Find the general solutions of the equation cos 8 = 2 sin%0 — 1. [ 7 marks]

Total 20 marks

A4 (@~  Given that 4 sin x — cos x = R sin (x - @), R >0 and 0° < <90°,

0]
(i)
Ny

"

®

(i)
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find the values of R and & correct to one decimal place [ 7 marks]

hence, find ONE value of x between 0° and 360° for which the curve
y =4 sin x — cos x has a stationary point. [ 2 marks]

(b) “Letz;=2-3iandz, =3 +4i.

Find in the forma + b, a, b € R,

a) Z,+2, [ 1 mark ]
b) 21z, [ 3 marks]
c) 4. [ 5 marks}
4]
Find the quadratic equation whose roots are z, and z,. [ 2 marks]
Total 20 marks
GO ON TO THE NEXT PAGE
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Section C (Medule 3)

Answer BOTH questions.a
lim sindx )
State the value of 8x>0 5 " [ 1mark]

Given that sin 2(x+8x)—sin:‘a=2cosA sin B, find A and B in terms of x
and/or &x. [ 2 marks)

Hence, or otherwise, differentiate with respect to x, from first principles,
the function y = sin 2x. [ 7 marks]

() Thecarvey = hx’+§-passes through the point P (1,1) and has a gradient of 5 at P.

Find
@) the values of the constants h and k { 5 marks]
(ii)  the equation of the tangent to the curve at the point where x = -;-
_ { 5 marks]
Total 20 marks
GO ON TO THE NEXT PAGE
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(@) In the diagram given below (not drawn te scale), the area S under the line y = x, for
0 < x £ 1, is divided into a set of n rectangular strips each of width i— anits.

A

1
| 1+ 2 3 a at 1,0~ F
n n n n "o
) n
@) Show that the area S is approximately
1,2 3 n-1
—=t+tS S5t
nt nt o onl n [ 6 marks])
n-1 . 1
(i)  Given that er = % n(n-1), show that S = _; (L-=). [ 2 marks]
re=
(b) ()  Show that for f(x) = ;_%4 o= iw'f:‘z : ( ‘4 marks]
Uag _ 62
(i)  Hence, evaluase! &2—»—% dx. [ 3 marks]
Iy
. . . r“ 2 1 ) _ o
() Find the value of u >0 if b < dx = 192 - > [ 5 marks]
Total 20 marks
£ND OF TEST
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