MAY/JUNE 2006

CARIBBEAN EXAMINATIONS COUNCIL ADVANCED PROFICIENCY EXAMINATION

PURE MATHEMATICS

UNIT 1 - PAPER 02

2 hours

24 MAY 2006 (p.m.)

This examination paper consists of THREE sections: Module 1, Module 2 and Module 3.

Each section consists of 2 questions.

The maximum mark for each section is 40.

The maximum mark for this examination is 120.

This examination consists of 5 pages.

INSTRUCTIONS TO CANDIDATES

- 1. DO NOT open this examination paper until instructed to do so.
- 2. Answer ALL questions from the THREE sections.
- 3. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three significant figures.

Examination Materials

Mathematical formulae and tables Electronic calculator Graph paper

Section A (Module 1)

Answer BOTH questions.

1. (a) Solve the simultaneous equations

$$x^2 + xy = 6$$
$$x - 3y + 1 = 0.$$

[8 marks]

- $\frac{1}{2}$ (b) The roots of the equation $x^2 + 4x + 1 = 0$ are α and β. Without solving the equation.
 - (i) state the values of $\alpha + \beta$ and $\alpha\beta$

[2 marks]

(ii) find the value of $\alpha^2 + \beta^2$

[3 marks]

(iii) find the equation whose roots are $1 + \frac{1}{\alpha}$ and $1 + \frac{1}{\beta}$.

[7 marks]
Total 20 marks

- 2. (a) Prove, by Mathematical Induction, that $\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$. [10 marks]
 - (b) Express, in terms of n and in the SIMPLEST form,
 - (i) $\sum_{r=1}^{2n} r$

f 2 marksl

(ii) $\sum_{r=n+1}^{2n} r.$

[4 marks]

(c) Find *n* if $\sum_{r=n+1}^{2n} r = 100$.

[4 marks]

Total 20 marks

0

Section B (Module 2)

Answer BOTH questions.

3.

(a)

- (i) Find the coordinates of the centre and radius of the circle $x^2 + 2x + y^2 4y = 4$.
 - (ii) By writing $x + 1 = 3 \sin \theta$, show that the parametric equations of this circle are $x = -1 + 3 \sin \theta$, $y = 2 + 3 \cos \theta$. [5 marks]
 - (iii) Show that the x-coordinates of the points of intersection of this circle with the line x + y = 1 are $x = -1 \pm \frac{3}{2}\sqrt{2}$. [4 marks]
- (b) Find the general solutions of the equation $\cos \theta = 2 \sin^2 \theta 1$.

[7 marks]

Total 20 marks

4. (a)

Given that $4 \sin x - \cos x = R \sin (x - \alpha)$, R > 0 and $0^{\circ} < \alpha < 90^{\circ}$,

(i) find the values of R and α correct to one decimal place

[7 marks]

(ii) hence, find ONE value of x between 0° and 360° for which the curve $y = 4 \sin x - \cos x$ has a stationary point. [2 marks]

(b)

Let $z_1 = 2 - 3i$ and $z_2 = 3 + 4i$.

(i) Find in the form a + bi, $a, b \in \mathbb{R}$,

a) $z_1 + z_2$

[1 mark]

b) $z_1 z_2$

[3 marks]

c) $\frac{z_1}{z_2}$

[5 marks]

(ii) Find the quadratic equation whose roots are z_1 and z_2 .

[2 marks]

Total 20 marks

Section C (Module 3)

Answer BOTH questions.ia

5. (a) (i) State the value of $\lim_{\delta x \to 0} \frac{\sin \delta x}{\delta x}$.

[1 mark]

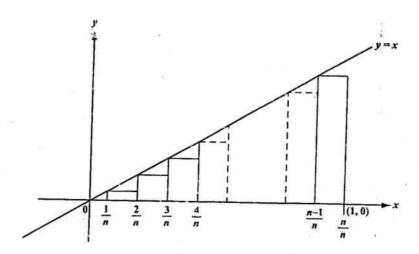
- (ii) Given that $\sin 2(x + \delta x) \sin 2x = 2 \cos A \sin B$, find A and B in terms of x and/or δx . [2 marks]
- (iii) Hence, or otherwise, differentiate with respect to x, from first principles, the function $y = \sin 2x$. [7 marks]
- (b) The curve $y = hx^2 + \frac{k}{x}$ passes through the point P (1,1) and has a gradient of 5 at P. Find
 - (i) the values of the constants h and k

[5 marks]

(ii) the equation of the tangent to the curve at the point where $x = \frac{1}{2}$. [5 marks]

Total 20 marks

6. (a) In the diagram given below (not drawn to scale), the area S under the line y = x, for $0 \le x \le 1$, is divided into a set of n rectangular strips each of width $\frac{1}{n}$ units.



(i) Show that the area S is approximately

$$\frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \dots + \frac{n-1}{n^2}.$$

[6 marks]

(ii) Given that $\sum_{r=1}^{n-1} r = \frac{1}{2} n (n-1)$, show that $S = \frac{1}{2} (1 - \frac{1}{n})$.

[2 marks]

(b) (i) Show that for $f(x) = \frac{2x}{x^2 + 4}$, $f'(x) = \frac{8 - 2x^{\frac{4}{3}}}{(x^2 + 4)^2}$

[4 marks]

(ii) Hence, evaluate $\int_{0}^{1} \frac{24 - 6x^2}{(x^2 + 4)^2} dx$.

[3 marks]

(c) Find the value of u > 0 if $\int_{u}^{2k} \frac{1}{x^4} dx = \frac{7}{192}$.

: [5 marks]

Total 20 marks