FORM TP 2005252

TEST CODE **02134010** MAY/JUNE 2005

CARIBBEAN EXAMINATIONS COUNCIL ADVANCED PROFICIENCY EXAMINATION

PURE MATHEMATICS

UNIT 1 – PAPER 01

2 hours

20 MAY 2005 (p.m.)

This examination paper consists of THREE sections: Module 1, Module 2, and Module 3.

Each section consists of 5 questions. The maximum mark for each section is 40. The maximum mark for this examination is 120.

This examination paper consists of 6 pages.

INSTRUCTIONS TO CANDIDATES

1. **DO NOT** open this examination paper until instructed to do so.

- 2. Answer ALL questions from the THREE sections.
- 3. Unless otherwise stated in the question, any numerical answer that is not exact **MUST** be written correct to three significant figures.

Examination materials

Mathematical formulae and tables Electronic calculator Graph paper

Section A (Module 1)

-2-

Answer ALL questions.

1. The diagram below, not drawn to scale, shows the graph of $f(x) = x^3 + hx^2 - 8x + k$ where h, k are constants.

(a)	From the graph, state the value of EACH of $f(0)$ and $f(2)$.	[2 marks]
, (b)	Hence, or otherwise, find the value of EACH of the constants h and k .	[3 marks]
(c)	Factorise $f(x)$ completely.	[4 marks]

Total 9 marks

2.

(a) Find the range of values of the real number x < 0 such that

 $x^2 - 2 |x| - 3 < 0.$ [4 marks]

(b) Show that if x and y are real numbers such that x < y, then for any real number k < 0, kx > ky. [4 marks]

Total 8 marks

Given that $x + \frac{1}{x} = 1$, by considering $(x + \frac{1}{x})^2$ (i) **(b)** show that $x^2 + \frac{1}{x^2} = -1$. [2 marks] Hence, or otherwise, find the value of $x^3 + \frac{1}{x^3}$. (ii) [5 marks] **Total 9 marks** Solve the following pair of equations simultaneously: $\begin{array}{l} x - 2y = -3\\ x^2 + 3y = 7 \end{array}$

Total 7 marks

[2 marks]

The function f is defined on **R** by $f: x \rightarrow -2x + 3$.

(a) Show that f is one-to-one (injective). [2 marks]

Find the value(s) of $x \in \mathbf{R}$ such that f(f(x)) = f(x) + 6. **(b)**

Without using calculators or tables, show that

 $\sqrt{11} + \sqrt{7} = \frac{4}{\sqrt{11} - \sqrt{7}}$

Total 7 marks

GO ON TO THE NEXT PAGE

[5 marks]

Ę

#73

- 3 -

3.

4

(a)

4.

5.

Section B (Module 2)

- 4 -

Answer ALL questions.

In the diagram below (not drawn to scale), *M* is the mid-point of AB. *MN* is perpendicular to the straight line through *A*, *M* and *B*.

(a) Find

6.

(i)	the coordinates of M	[2 marks]
(ii)	the gradient of the line through A and B	[2 marks]
(iii)	the equation of the line through M and N .	[2 marks]

(b) The point P on AB divides AB internally such that the ratio AP : PB is 3 : 1. Find the coordinates of P. [2 marks]

Total 8 marks

7.	(a)	Express $f(\theta) = \sqrt{2} \cos \theta - \sin \theta$ in the form $R \cos (\theta + \alpha)$.	[5 marks]
	(b)	Hence, find the minimum value of $f(\theta)$, where $0 \le \theta \le 2\pi$.	[1 mark]

(c) Determine the value of θ , $0 \le \theta \le 2\pi$, at which the minimum value of $f(\theta)$ occurs. [2 marks]

Total 8 marks

GO ON TO THE NEXT PAGE

. .

8.

- (a) Find the range of values of k for which the quadratic equation $x^2 + 2kx + 9 = 0$ has complex roots. [4 marks]
- (b) Express the complex number $\frac{2+3i}{3+4i}$ in the form x + yi, where x and y are real numbers. [4 marks]

Total 8 marks

- 9. Three points, A, B and C, have coordinates (1,2), (2,5) and (0, -4) respectively relative to the origin O.
 - (a) Express the position vector of EACH of A, B and C in terms of *i* and *j*. [3 marks]

(b) If $\overrightarrow{AB} = \overrightarrow{CD}$, find the position vector of D in terms of *i* and *j*. [6 marks]

Total 9 marks

10. Find the values of θ , $0 \le \theta \le 2\pi$, for which the vectors $\cos \theta i + \sqrt{3} j$ and $\frac{1}{4}i + \sin \theta j$ are parallel.

Total 7 marks

Section C (Module 3)

Answer ALL questions.

- 11.
- (a) Use the result that $(\sqrt{x+h} + \sqrt{x})(\sqrt{x+h} \sqrt{x}) = h$ to show that
 - $\lim_{h \to 0} \frac{\sqrt{x+h} \sqrt{x}}{h} = \frac{1}{2\sqrt{x}}.$ [5 marks]

(b) **Deduce**, from first principles, the derivative with respect to x of $y = \sqrt{x}$. [1 mark]

Total 6 marks

6

12.

(a)

(b)

Find the real values of x for which the function

$$f(x) = \frac{x}{x^2 - 2x - 8}$$

is discontinuous.

[3 marks]

Show that the equation $x^3 = 8 + 4x$ has a root in the closed interval [2, 3]. [5 marks]

Total 8 marks

GO ON TO THE NEXT PAGE

02134010/CAPE 2005

13. *P* is the point on the curve $y = 2x^3 + kx - 5$ where x = 1 and the gradient is -2. Find

(a)	the value of the constant k	[3 marks]
(b)	the value of $\frac{d^2y}{dx^2}$ at P	[2 marks]
(c)	the equation of the normal to the curve at P .	[4 marks]
		Total 9 marks

14. (a) Find the coordinates of the stationary points of the function $f: x \to x^3 - 3x^2 - 9x + 6$. [6 marks]

(b) Determine the nature of the stationary points of f. [3 marks]

Total 9 marks

15. Three points, P, Q and R, on the curve $y = x^2 - 2x$ are shown in the diagram (not drawn to scale) below.

(a)

Find the coordinates of EACH of the points P, Q and R.

[4 marks]

(b) Find the TOTAL area bounded by the curve shown above, the x-axis and the lines x = -1 and x = 2. [4 marks]

Total 8 marks

END OF TEST