FORM TP 2005253

TEST CODE 02134020

MAY/JUNE 2005

CARIBBEAN EXAMINATIONS COUNCIL ADVANCED PROFICIENCY EXAMINATION

PURE MATHEMATICS

UNIT 1 - PAPER 02

2 hours

25 MAY 2005 (p.m.)

This examination paper consists of THREE sections: Module1, Module 2 and Module 3.

Each section consists of 2 questions. The maximum mark for each section is 40. The maximum mark for this examination is 120. This examination consists of 6 pages.

INSTRUCTIONS TO CANDIDATES

- 1. DO NOT open this examination paper until instructed to do so.
- 2. Answer ALL questions from the THREE sections.
- 3. Unless otherwise stated in the question, any numerical answer that is not exact **MUST** be written correct to three significant figures.

Examination Materials

21

Mathematical formulae and tables Electronic calculator Graph paper

Section A (Module 1)

Answer BOTH questions.

1.

(a)

(i)

Complete the table below for the function | f(x) |, where f(x) = x (2 - x).

x	-2	-1	0	1	2	3	4
f(x)	8			enter ser	0		8

[2 marks]

- (ii) Sketch the graph of | f(x) | for $-2 \le x \le 4$. [4 marks]
- (b) Find the value(s) of the real number, k, for which the equation $k(x^2 + 5) = 6 + 12x x^2$ has equal roots. [6 marks]
- (c) (i) If $2^{(x^2)} = 16^{(x-1)}$, find x. [4 marks]
 - (ii) Without using calculators or tables, evaluate

$$(\sqrt{2}+1)^3 - (\sqrt{2}-1)^3$$

[4 marks]

Total 20 marks

GO ON TO THE NEXT PAGE

(a) Prove, by Mathematical Induction, that $10^n - 1$ is divisible by 9 for all positive integers *n*. [9 marks]

(b) A pair of simultaneous equations is given by

$$px + 2y = 8$$
$$-4x + p^2y = 16$$

where $p \in \mathbf{R}$.

2.

- (i) Find the value of p for which the system has an infinite number of solutions. [3 marks]
- (ii) Find the solutions for this value of p. [3 marks]

(c) Find the set of real values of x for which $\frac{x+4}{x-2} > 5$. [5 marks]

Total 20 marks

Section B (Module 2)

Answer BOTH questions.

3. The equation of the circle, Q, with centre O is $x^2 + y^2 - 2x + 2y = 23$.

- (a) Express the equation of Q in the form (x a)² + (y b)² = c. [5 marks]
 (b) Hence, or otherwise, state

 (i) the coordinates of the centre of Q
 [2 marks]
 - (ii) the radius of Q. [1 mark]
- (c) Show that the point A(4, 3) lies on Q. [3 marks]
- (d) Find the equation of the tangent to Q at the point A. [5 marks]

(e) The centre of Q is the midpoint of its diameter AB. Find the coordinates of B. [4 marks]

Total 20 marks

GO ON TO THE NEXT PAGE

- 4. The diagrams shown below, not drawn to scale, represent
 - a sector, OABC, of a circle with centre at O and a radius of 7 cm, where angle AOC measures $\frac{\pi}{3}$ radians.
 - a right circular cone with vertex O and a circular base of radius r cm which is formed when the sector OABC is folded so that OA coincides with OC.

- 4 -

(a)

(b)

(i)

(ii)

Express the arc length ABC in terms of π .

[1 mark]

(ii) Hence, show that

a) $r = \frac{7}{6}$ [3 marks]

b) if h cm is the height of the cone, then the exact value of h is $\frac{7\sqrt{35}}{6}$.

[2 marks]

[5 marks]

(i) Show that $\cos 3 \theta = 4 \cos^3 \theta - 3 \cos \theta$.

The position vectors of two points A and B relative to the origin O are

$$a = 4\cos^2\theta i + (6\cos\theta - 1)j$$

$$b = 2\cos\theta i - j.$$

By using the identity in (b) (i) above, find the value of θ , $0 \le \theta \le \frac{\pi}{4}$, such that a and b are perpendicular. [5 marks]

(c) Find the modulus of the complex number
$$z = \frac{25(2+3i)}{4+3i}$$

[4 marks]

Total 20 marks

GO ON TO THE NEXT PAGE

Section C (Module 3)

Answer BOTH questions.

(c) The diagram below, not drawn to scale, shows part of the curve $y^2 = 4x$. P is the point on the curve at which the line y = 2x cuts the curve.

Find

(i) the coordinates of P

[3 marks]

(ii) the volume of the solid generated by rotating the shaded area through 2π radians about the x-axis. [4 marks]

Total 20 marks

GO ON TO THE NEXT PAGE

- 6.
- Differentiate, with respect to x,

 $(x^2 + 7)^5 + \sin 3x.$ [6 marks]

(b)

(a)

- Determine the values of x for which the function $y = x^3 9x^2 + 15x + 4$
 - (i) has stationary points [3 marks]
 - (ii) is increasing [2 marks]
- (iii) is decreasing. [2 marks]
- (c) (i) Use the substitution t = a x to show that $\int_0^a f(x) dx = \int_0^a f(a x) dx$. [4 marks]

(ii) If $\int_0^4 f(x) dx = 12$, use the substitution t = x - 1 to evaluate $\int_1^5 3f(x - 1) dx$. [3 marks]

Total 20 marks

END OF TEST

Advantation of the