

TEST CODE **02134010**

MAY/JUNE 2004

CARIBBEAN EXAMINATIONS COUNCIL ADVANCED PROFICIENCY EXAMINATION

MATHEMATICS

UNIT 1 – PAPER 01

1¹/₂ hours 21 MAY 2004 (p.m.)

This examination paper consists of THREE sections: Module 1.1, Module 1.2, and Module 1.3.

Each section consists of 5 questions. The maximum mark for each section is 30. The maximum mark for this examination is 90. This examination paper consists of 6 pages.

INSTRUCTIONS TO CANDIDATES

1. **DO NOT** open this examination paper until instructed to do so.

- 2. Answer ALL questions from the THREE sections.
- 3. Unless otherwise stated in the question, all numerical answers **MUST** be given exactly **OR** to three significant figures as appropriate.

Examination materials

Mathematical formulae and tables Electronic calculator Graph paper

SECTION A (MODULE 1.1)

-2-

Answer ALL questions.

1. The function $f(x) = x^3 - p^2x^2 + 2x - p$ has remainder - 5 when it is divided by x + 1. Find the possible values of the constant p. [6 marks]

(a) Given that x > y, and k < 0 for the real numbers x, y and k, show that kx < ky.

(b) Solve, for $x \in \mathbf{R}$, the equation

2.

 $x^2 - 6 |x| + 8 = 0.$

[4 marks]

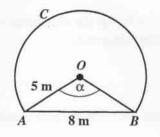
[4 marks]

3. (a) Show that $\frac{4}{2^x} = 2^{2-x}$. [1 mark]

(b) Solve, for x, the equation

 $2^x + 2^{2-x} = 5.$ [4 marks]

4. The functions f and g are defined on \mathbf{R} by


 $f: x \rightarrow -3x + 6, g: x \rightarrow x + 7.$

Solve, for x, the equation

f(g(2x+1)) = 30.

[5 marks]

5. The figure below (not drawn to scale) represents a cross-section through a tunnel. The crosssection is part of a circle with radius 5 metres and centre O. The width AB of the floor of the tunnel is 8 metres.

Calculate

1

- (a) the size, in radians, of the angle α
- (b) the length of the arc ACB.

[3 marks]

[3 marks]

đ

Total 30 marks

We have a state of the state for a state of the

GO ON TO THE NEXT PAGE

SECTION B (MODULE 1.2)

Answer ALL questions.

6. Obtain the Cartesian equation of the curve whose parametric representation is $x = 2t^2 + 3$, $y = 3t^4 + 2$ in the form $y = Ax^2 + Bx + C$, where A, B and C are real numbers.

[6 marks]

- 7. Find the range of values of $x \in \mathbb{R}$ for which $\frac{x-2}{x+3} > 0$, $x \neq -3$. [6 marks]
- 8. (a) Show that $\frac{\sin 2A}{1 \cos 2A} = \cot A$, for $\cos 2A \neq 1$. [3 marks]
 - (b) Solve the equation $\cos 2\theta = 3 \cos \theta 2$ for $0 \le \theta \le \pi$. [4 marks]
- 9. Given that α and β are the roots of the equation $x^2 3x 1 = 0$, find the equation whose roots are $1 + \alpha$ and $1 + \beta$. [5 marks]
- 10.The position vector of a point P is i + 3j. Find(a)the unit vector in the direction of \overrightarrow{OP} [2 marks](b)the position vector of a point Q on \overrightarrow{OP} produced such that $|\overrightarrow{OQ}| = 5$ [2 marks](c)the value of t such that the vector 3t i + 4j is perpendicular to the vector \overrightarrow{OP} .[2 marks]

Total 30 marks

SUPERING NO OF

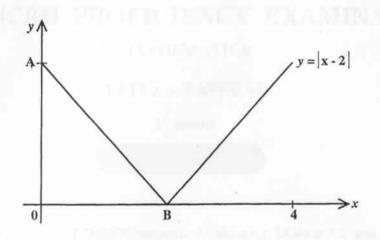
SECTION C (MODULE 1.3)

Answer ALL questions.

Given that $\lim_{x\to -2} \{4f(x)\} = 5$, 11. (a) evaluate $\lim_{x \to -2} \{f(x) + 2x\}$.

Differentiate from first principles the function 12. $f(x)=x^3,$ with respect to x. [6 marks] Given that $f(x) = rx^2 + sx + t$, $r \neq 0$, 13. (a) find (i) f'(x)f''(x)(ii) [2 marks] (b) find, in terms of r and s, the conditions under which f(x) will have a maximum [3 marks] (c) find the maximum. [3 marks]

The curve $y = px^3 + qx^2 + 3x + 2$ passes through the point T(1, 2) and its gradient at T is 7. 14. Find the values of the constants p and q. [5 marks]


GO ON TO THE NEXT PAGE

[5 marks]

d

1

15. The diagram below is a rough diagram of y = |x - 2| for real values of x from x = 0 to x = 4.

[2marks]

- (a) Find the coordinates of the points A and B.
- (b) Find the volume generated by rotating the triangle OAB shown above through 360° about the x-axis. [4 marks]

Total 30 marks

END OF TEST