FORM TP 02134032/SPEC

CARIBBEAN EXAMINATIONS COUNCIL

ADVANCED PROFICIENCY EXAMINATION

MATHEMATICS

SPECIMEN PAPER

UNIT 1 - PAPER 03B 2004-

 $1\frac{1}{2}$ hours

This examination paper consists of THREE sections: Module 1, Module 2 and Module 3

The maximum mark for each question is 20. The maximum mark for this examination is 60. This examination consists of 4 printed pages.

INSTRUCTIONS TO CANDIDATES

1. **DO NOT** open this examination paper until instructed to do so.

2. Answer ALL THREE questions.

3. Unless otherwise stated in the question, any numerical answer that is not exact **MUST** be written correct three significant figures.

Examination Materials:

Mathematical formulae and tables Electronic calculator Ruler and graph paper

> Copyright © 2004 Caribbean Examinations Council All rights reserved

02134032/CAPE/SPEC 2004

SECTION A (MODULE 1)

Answer this question.

2x-3 >5.	[4 marks]

- (b) (i). Express $3x^2 4x + 1$ in the form $a(x + h)^2 + k$, stating explicitly the values of the constants a, h and k. [3 marks]
 - (ii) Hence, find the minimum value of $3x^2 4x + 1$ and the value of x at which the minimum occurs. [2 marks]
 - (iii) Sketch the graph of the function $3x^2 4x + 1$. [4 marks]
- (c) The functions f and g are defined on \mathbf{R} by

$$f: x \to x^2 - x, \quad g: x \to 2x - 3.$$

Determine the value(s) of x for which

(i) f(x) + g(2x) = 7

(ii)
$$g^{-1}(x) = -2$$
.

1.

[3 marks]

[4 marks]

Total 20 marks

02134032/CAPE/SPEC/2004

SECTION A (MODULE 2)

3

Answer this question.

2.

(a)

The diagram below not drawn to scale, shows the movement of a windscreen wiper of a car. It oscillates about a fixed point O and travels from OAD to OBC and back.

Given that OB = 24 cm, BC = 45 cm and angle DOC = $\frac{2\pi}{3}$ radians, calculate

(i)	the area ABCD swept by the wiper	[3 marks]
(ii)	the perimeter of ABCD.	[2 marks]

(b) Prove that, for
$$\sin \theta \neq 1$$
 or -1 ,

(i)
$$\frac{1}{1-\sin\theta} + \frac{1}{1+\sin\theta} = 2 \sec^2 \theta.$$
 [3 marks]

(ii)
$$\frac{1}{1-\sin^2\theta} - \frac{1}{1+\sin\theta} = \tan\theta \sec\theta.$$
 [3 marks]

(c) Let x and y be non-zero real numbers, z be the complex number given by z = x + iyand \overline{z} be the conjugate of z. Find the values of x and y if

$$\frac{1}{z} + \frac{3}{\overline{z}} = i + 1.$$
 [6 marks]

(d) The position vectors of the points P and Q relative to the origin O are 5i + 2j and i - 4j respectively.

If $\overrightarrow{OP} = 3 \ \overrightarrow{OQ} + 2 \ \overrightarrow{OR}$, find the position vector of the point R. [3 marks]

Total 20 marks

GO ON TO NEXT PAGE

02134032/CAPE/SPEC/2004

SECTION C (MODULE 3)

Answer ALL questions.

(a)	(i) Given $f(x) = x^2 + x - 3$, find $f(x + h)$.	[2 marks]
	(ii) Hence, express $\{f(x+h) - f(x)\}$ in its simplest form.	[2 marks]
	(iii) Deduce $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.	[2 marks]
(b)	Determine the real values of x for which the function	
	$\frac{x}{\left(5x+1\right)^2-9}$	
	is continuous.	[2 marks]
(c)	The curve $y = ax^2 + bx + c$ passes through the points (0, -2) and gradient at $x = 2$ is 5. Find	(1, -3) and its
	(i) the value of EACH of the constants a , b and c	[5 marks]
	(ii) the area under the curve between $x = 2$ and $x = 3$.	[3 marks]
		1 0
(d)	If $\int_{0}^{a} (x-1) dx = \frac{1}{2} \int_{0}^{a} (x+1) dx$, and $a > 0$, find the value of a .	[4 marks]
		Total 20 marks

END OF TEST

02134032/CAPE/SPEC/2004

3.

4