FORM TP 23240

TEST CODE **000571** MAY/JUNE 2003

CARIBBEAN EXAMINATIONS COUNCIL ADVANCED PROFICIENCY EXAMINATION

MATHEMATICS

UNIT 1 - PAPER 01

1½ hours

23 MAY 2003 (p.m.)

This examination paper consists of THREE sections: Module 1.1, Module 1.2 and Module 1.3.

Each section consists of 5 questions. The maximum mark for each section is 30. The maximum mark for this examination is 90. This examination consists of 5 printed pages.

INSTRUCTIONS TO CANDIDATES

1. **DO NOT** open this examination paper until instructed to do so.

2. Answer ALL questions from the THREE sections.

3. Unless otherwise stated in the question, all numerical answers **MUST** be given exactly **OR** to three significant figures as appropriate.

Examination material:

Mathematical formulae and tables Electronic calculator Ruler and graph paper

Section A (Module 1.1)

-

- 2 -

Answer ALL questions.

1. (a) Given that
$$hx^3 - 12x^2 - x + 3 \equiv (2x - 1)(2x + 1)(x - k)$$
.

find the values of the constants h and k.

(b) Solve, for x, the equation
$$\frac{3^{(x^2)}}{27} = 9^x$$
. [5 marks]


2. Find the real values of x which satisfy the equation

$$|2x-3|^2 - 6|2x-3| + 5 = 0.$$
 [5 marks]

3. Given that $3 - 2x - x^2 \equiv a(x+h)^2 + k$,

(a)	state explicitly the values of the constants a , h and k	[3 marks]
(b)	determine the maximum value of $3 - 2x - x^2$.	[2 marks]

4. The diagram below, not drawn to scale, shows a circular games field of radius 35 m enclosed within a circular road of radius 42 m. The field and the road have the same centre O and angle AOD is 30°.

(a) Find the area of the section of the road represented by the shaded region ABCD.

[4 marks]

[2 marks]

(b) Find the length of the chord AD in the diagram.

[3 marks]

GO ON TO THE NEXT PAGE

- 3 -

5. The functions f and g are defined on **R** by

3

 $f: x \to 2x, \qquad g: x \to 4x + 6.$

Find the value(s) of x such that

$$x g(x) = g(f(x)).$$

[6 marks]

Total 30 marks

Section B (Module 1.2)

Answer ALL questions.

(a)	the point (0, 1).		[3 marks]		
(b)	(i)	Find the equation of the circle with centre $(1, -2)$ and radius 2 units.	[2 marks]		
	(ii)	Show, by calculation, that the line $x = 3$ touches this circle at $(3, -2)$.	[2 marks]		
(a)	Find th	e range of values of x for which			
		$\frac{x}{x+1} > 0.$	[4 marks]		
(b)	Find th	e range of values of x for which			
		$(2x + 1)^2 \le 9.$	[2 marks]		
Express sin $\theta - \cos \theta$ in the form R sin($\theta - \alpha$), where α is acute, and hence find ALL the solutions of					
sin θ –	- cos θ =	= 1 which lie in the range $0 \le \theta \le \pi$.	[5 marks]		
	(b) (a) (b) Expres	the point of the	 the point (0, 1). (b) (i) Find the equation of the circle with centre (1, -2) and radius 2 units. (ii) Show, by calculation, that the line x = 3 touches this circle at (3, -2). (a) Find the range of values of x for which x + 1 > 0. (b) Find the range of values of x for which (2x + 1)² ≤ 9. 		

000571/CAPE 2003

9.	(a)	Express the complex number $\frac{4-2i}{1-3i}$ in the form of $a + bi$	
*		where a and b are real numbers.	[3 marks]
	(b)	Show that the argument of the complex number in (a) above is $\frac{\pi}{4}$.	[2 marks]
10.		position vectors of two points A and B are	
*	(a)	- j and i + j respectively. Find	
		(i) the unit vector in the direction of \overrightarrow{OB}	[2 marks]
		(ii) the position vector of the point C on \overrightarrow{OB} produced such that	
		$ \overrightarrow{OC} = \overrightarrow{OA} .$	[2 marks]
	; (b)	Show that the vectors $a\mathbf{i} + b\mathbf{j}$ and $-b\mathbf{i} + a\mathbf{j}$ are perpendicular.	[3 marks]

- 4 -

Total 30 marks

[3 marks]

Section C (Module 1.3)

Answer ALL questions.

(a) Find

11.

 $\lim_{x \to -2} \frac{x^2 + x - 2}{x^2 + 5x + 6}.$

(b)

Find the real values of x for which the function

$$f(x) = \frac{|x|}{(|x|^2 - 9)}$$
 is continuous. [2 marks]

12. Find the gradient of the tangent to the curve $y = 2x^3$ at the point where y = 16. [5 marks]

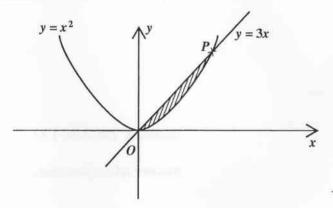
GO ON TO THE NEXT PAGE

000571/CAPE 2003

Find the value(s) of x at the stationary point(s) of the function 13. (a)

$$g: x \to 2x^3 - 3x^2 + 4.$$

Determine the nature of the stationary point(s) of g. (b)


Find f'(x) for the function 14.

$$f(x) = \frac{x}{x^2 + 7} , \text{ and}$$

hence, or otherwise, evaluate

$$\int_{1}^{1} \frac{14 - 2x^2}{(x^2 + 7)^2} dx.$$
 [6 marks]

15. In the diagram below, not drawn to scale, the line y = 3x cuts the curve $y = x^2$ at the points O and P.

Find

the coordinates of the point P [3 marks] (a)

the area of the shaded region. (b)

B marks]

[4 marks]

Total 30 marks

END OF TEST