

CARIBBEAN EXAMINATIONS COUNCIL ADVANCED PROFICIENCY EXAMINATION

MATHEMATICS

UNIT 1 – PAPER 02

2½ hours

28 MAY 2003 (p.m.)

This examination paper consists of THREE sections: Module 1.1, Module 1.2 and Module 1.3.

Each section consists of 2 questions. The maximum mark for each section is 50. The maximum mark for this examination is 150. This examination consists of 6 printed pages.

INSTRUCTIONS TO CANDIDATES

DO NOT open this examination paper until instructed to do so.

- 2. Answer ALL questions from the THREE sections.
- 3. Unless otherwise stated in the question, all numerical answers **MUST** be given exactly **OR** to three significant figures as appropriate.

Examination material:

1.

23241

Mathematical formulae and tables Electronic calculator Ruler and graph paper

1.

Copyright © 2002 Caribbean Examinations Council. All rights reserved.

Section A (Module 1.1)

Answer BOTH questions.

(a) Given that x - 1 and x + 2 are factors of $f(x) = x^3 + px + q$ where p and q are integers, find p and q.

Hence, find the remainder when $x^3 + px + q$ is divided by (x + 1).

(b) In the diagram shown below, not drawn to scale, AB = 2 cm, AC = 3 cm and $BAC = 120^{\circ}$.

Calculate to 3 significant figures

(i) the length of BC

(ii)

the value of sin C.

(c) The diagram shown below, not drawn to scale, is a sketch of a wedge in an electrical appliance in the form of a sector of a circle, centre O and radius 4 cm. Angle AOB measures $\frac{\pi}{4}$ radians.

[6 marks]

[7 marks]

[4 marks]

[4 marks]

(i) Show that the area of the shaded region is $2(\pi - 2\sqrt{2})$.

(ii) Using the cosine rule, show that the length of the chord AB is $4\sqrt{(2-\sqrt{2})}$. [4 marks]

Total 25 marks

GO ON TO THE NEXT PAGE

000572/CAPE 2003

1.

2.

(a)

The diagram below, not drawn to scale, shows the graph of y = f(x) which has a minimum point at (2, -2).

Use this diagram to assist you in sketching the following functions:

(i)	y = f(x-1)	[3 ma	arks]
(1)	y = f(x-1)	[3 ma	arks

(ii) y = f(x) + 3 [3 marks]

(iii)
$$y = |f(x)|$$
 [3 marks]

(b) Two sets, A and B, are defined on R as follows:

 $A = \{x : 0 \le x \le 4\} \\B = \{x : 0 \le x \le 8\}.$

The function $f: A \rightarrow B$ is defined by $f: x \rightarrow x(4-x)$.

(i) Sketch the graph of $f: A \rightarrow B$. [3 marks]

(ii) Find a set C such that $C \subset A$ and $f: C \to B$, is one-to-one. [3 marks]

(iii) By considering the solutions of the equation f(x) = 8, show that f is NOT onto. $\frac{4}{3}$ [4 marks]

(iv) By solving the equation f(x) = 0, show that $f: A \to B$ is NOT one-to-one. [4 marks]

(v) Find the range of values of y for which the equation f(x) = y possesses a solution. [2 marks]

Total 25 marks

36

GO ON TO THE NEXT PAGE

000572/CAPE 2003

Section B (Module 1.2)

Answer BOTH questions.

In the diagram shown below, not drawn to scale, the line 2x + 3y = 6 meets the y-axis at A and the 3. x-axis at B.

C is the point on the line 2x + 3y = 6 such that AB = BC.

CD is drawn perpendicular to AC to meet the line through A parallel to 5x + y = 7 at D.

(a)	Find the coordinates of A, B and C.	[7 marks]
(b)	Find the equations of the lines CD and AD.	[7 marks]
(c)	Find the coordinates of the point D.	[5 marks]
(d)	Calculate the area of triangle ACD.	[6 marks]
	- 2	Total 25 marks

GO ON TO THE NEXT PAGE

000572/CAPE 2003

- 4 -

(a) Solve
$$\cos 2\theta - 3 \cos \theta = 1$$
 for $0 \le \theta \le 2\pi$. [6 marks]
(b) If $\cos A = \frac{3}{5}$, find $\tan \frac{A}{2}$ [6 marks]

(c) Prove that
$$\cos^4 A - \sin^4 A + 1 = 2\cos^2 A$$
. [5 marks]

(d) Given that
$$\sin A = \frac{12}{13}$$
 and $\sin B = \frac{4}{5}$, where A and B are acute angles,
find $\cos (A - B)$ and $\sin (A + B)$.

[8 marks]

Total 25 marks

Section C (Module 1.3)

Answer BOTH questions.

5.	(a)	Given that $f(x) = x^3 - 5x^2 + 3x$, show that $f(x) = 0$ possesses a root in the interval $\left[\frac{1}{2}, 1\right]$.		
54 AP.1		By considering suitable values of x greater than 1,		
		show that there is another root of $f(x) = 0$ greater than 1.	[7 marks]	
	(b)	Find		
		(i) the coordinates of the stationary points of $f(x)$	[6 marks]	

(ii) the second derivative of f(x), and hence, determine which stationary point is a local maximum and which is a local minimum. [5 marks]

(c) If
$$y = \frac{1}{x^2 + 2}$$
, show that $\frac{d^2 y}{dx^2} = 2(3x^2 - 2)y^3$. [7 marks]

Total 25 marks

GO ON TO THE NEXT PAGE

000572/CAPE 2003

4.

- 5 -

6. (a) In the diagram given below, not drawn to scale, the area under the curve $y = (1+x)^{-1}$, $0 \le x \le 1$, is approximated by a set of *n* rectangular strips each of width $\frac{1}{n}$ units.

Show that the sum, S_n , of the areas of the rectangular strips is $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$. [7 marks]

(b) (i) Show that for
$$f(x) = \frac{x}{x^2 + 4}$$
,
 $f'(x) = \frac{4 - x^2}{(x^2 + 4)^2}$. [4 marks]
(ii) Hence, evaluate
 $\int_{0}^{2} \frac{12 - 3x^2}{(x^2 + 4)^2} dx$. [4 marks]
(c) (i) Sketch the curve $y = x_{2}^{2} + 1$. [3 marks]

(ii) Find the volume obtained by rotating the portion of the curve between
$$x = 0$$
 and $x = 1$ through 2π radians about the y axis. [7 marks]

Total 25 marks

END OF TEST

- 6 -

000572/CAPE 2003