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Section A (Module 1.1)

Answer BOTH questions.

1. JetA = {xe Rix>2}and B = {x& R: x>0}. Letf: A — B be the function given by
2x
f. X — X——j .
(a)  Find p, q € R such that flx) = p =L [3 marks]
(b) Show that f is one-to-one. [6 marks]
(©) Determine whether there is an x € A such that f{x) = 1. [7 marks]
(d) Use Part (¢) above to determine

(®)

i) the range of f [5 marks]
(i) whether or not fis onto. [4 marks]

Total 25 marks

Ift = tan !/, O, express cos 6@ and sin 6 in terms of . [6 marks]

Hence, find tan I/, 6 when cos 6+ 2 sin 8 = 11/s. [7 marks]

Intriangle ABC, ACB = 90° and D is the point on BC such that ABD=BAD = 6. Given
that BD = 5 cm and AB = 8 cm, find

(1) cos 6 {3 marks]
(i) sin 8 [3 marks]
(ii1) the length of BC {3 marks]
(iv) the length of AC. [3 marks]

Total 25 marks

GO ON TO THE NEXT PAGE
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3. (a)
(b)
4 (a)
(®)
(c)
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Section B (Module 1.2)
Answer BOTH questions.
A curve is given by the parametric equations

x = 42, y = 8t

6)) Find Z—Z in terms of ¢. ' [4 marks]
(ii) Show that the Cartesian equation of the tangent to the curve at the point P with
parameter T is
Ty = x + 4T (5 marks)
(iii) The tangent in (ii) above meets the y-axis at tiwe point Q and the x-axis at the point
R. If O is the origin, show that the area of triangle OQR is 8T? square units.
[6 marks]
Solve for x € R the inequality
2x + 3
e <L [10 marks]

Total 25 marks

Find the two square roots of the complex number 5 — 12i in the form x + yi, where
x,y€ R. ) [8 marks]
(i) Ifz =x + yi,wherex,ye R,y#0, find the real and imaginary parts of z + -:—
[S marks)

(ii) Find and identify the locus of the points for which the imaginary part of z +';— is

Zero.
[5 marks]

If the position vector of the point A isi ~ 3j and the position vector of the point B is
2i + 5§, find

q
) | AB l ~ [4 marks]
(ii) the position vector of the mid-point of AB. {3 marks]

Total 25 marks

GO ON TO THE NEXT PAGE
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Section C (Module 1.3)

Answer BOTH questions.

5. (a) By expressing x — 4 as (\/?+ 2) (Vx = 2), find
lim Nx - 2 .
x—4 x — 4

Hence, find xl-i_r)n4 xz—\/f% ; [ 5 marics]

) The equation of a curve is given by

fix) = x(x + 2)%

(1) Obtain an expression for f7(x). [ 3 marks]
(i) Find the stationary point(s) of f. [2 m.arks]
(ii1) Determine the nature of the stationary point(é) of f. [ 5 marks]
(iv) Sketch the curve. ‘ [ 5 marks]

v) Find the area bounded by the curve and the interval of the x-axis, -2 <x < 0.
[ 5 marks]

Total 25 marks

6. (a) Using the substitution u = x + 3 or otherwise, evaluate
[x\x+3 d. [ 6 marks]

(b) The section of the curve y = xVx + 3, 0 < x < 2, is rotated about the x-axis through 360°.
Find the volume generated by

(i) direct integration [ 8 marks]
(i) the trapezium rule, using five coordinates. [11 marks]
Total 25 marks
END OF TEST
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