FORM TP 21223

TEST CODE **000572** MAY/JUNE 2001

CARIBBEAN EXAMINATIONS COUNCIL ADVANCED PROFICIENCY EXAMINATION

MATHEMATICS

UNIT 1 - PAPER 02

(Contract P.)

 $2\frac{1}{2}$ hours (12 JUNE 2001 (p.m.)

further of 10

21223

This examination paper consists of THREE sections: Module 1.1, Module 1.2 and Module 1.3.

Each section consists of 2 questions. The maximum mark for each section is 50. The maximum mark for this examination is 150. This examination consists of 7 pages.

INSTRUCTIONS TO CANDIDATES

1. DO NOT open this examination paper until instructed to do so.

2. Answer ALL questions from the THREE sections.

3. Unless otherwise stated in the question, all numerical answers **MUST** be given exactly **OR** to three significant figures as appropriate.

Examination Materials

Mathematical formulae and tables Electronic calculator Ruler and compass

SECTION A (MODULE 1.1)

Answer BOTH questions.

(a) Show that the inequality

1.

 $|x-3| \ge |x|-|3|$

holds for any $x \in \mathbf{R}$.

- (b) Factorise completely the polynomial, $x^3 + 2x^2 x 2$. [4 marks]
- (c) Find the value of r such that $x^4 7x + 4r$ has a remainder -2 when it is divided by x + 3. [4 marks]
- (d) The functions, f and g, are defined by

$$f: x \to \frac{x^2}{1-x^2}$$
, $x^2 \neq 1$, and $g: x \to \frac{1}{2}x - 3$.

- (i) Explain clearly why f is not 1 1.
- (ii) Calculate and simplify g f(x).
- (e)

Time, t, minutes	0	10	20	30	40	50
Numbers of Bacteria, n	5	10	20	40	80	160

The table above shows the growth in bacterial numbers, n, with time, t, in minutes, as recorded during a laboratory experiment. After treatment with an antibiotic, the number of bacteria is reduced at the same rate for the next 50 minutes.

Using a scale of 2 cm to represent 10 minutes on the x-axis and 2 cm to represent
20 bacteria on the y-axis, draw the growth curve for the treatment stage.

[4 marks]

(ii) Hence, estimate the number of bacteria present after the first 35 minutes of treatment. [1 mark]

Total 25 marks

000572/CAPE 2001

[3 marks]

[5 marks]

[4 marks]

2.	(a)	The function, f, is given by $f(x) = 2x^2 + 11x + 3$.	
		(i) Express $f(x)$ in the form $p(x-q)^2 + r$, where $p, q, r \in \mathbf{R}$.	[3 marks]
		(ii) Sketch the graph of $f(x)$.	[2 marks]
		(iii) Hence, or otherwise, find the turning point of the graph a it is a maximum or a minimum.	and determine whether [3 marks]
	(b)	Given that δ is an acute angle such that $\cos \delta = \frac{1}{4}x$,	
		find the expression for sin 2δ in terms of x.	[4 marks]
	(c)	The parametric equations of a curve, C , are	
		$2x = \cot \theta - \csc \theta$ and $4y = \csc \theta - 2 \cot \theta$.	
		[20] A. et al. A sub-processing proceeding sub-pro- top of the sub-processing system of the sub-pro- sub-processing system of the sub-processing system.	
		(i) Express $\cot \theta$ and $\csc \theta$ in terms of x and y.	[3 marks]
		(ii) Find an equation connecting x and y.	[2 marks]
	(d)	(i) Sketch, in separate diagrams, the graphs of $y = \sin x$ and $y = -2\pi \le x \le 2\pi$.	= cos <i>x</i> for [6 marks]
		(ii) State clearly the transformation which maps $y = \cos x$ on	to $y = \sin x$. [2 marks]
			Le mint spol

Total 25 marks

- 3 -

SECTION B (MODULE 1.2)

Answer BOTH questions.

3. (a)

A pair of simultaneous equations is given by

2x + py = 13px + 32y = 52,

where $p \in \mathbf{R}$.

Find the value(s) of p for which the system of equations above has

(i) a unique	e solution	
	a second with the second second at the local	[3 marks]
(11) an infini	te number of solutions	[2]
(iiii) no soluti	[3 marks]	
(m) no soluti	ion.	[3 marks]
Solve the following	ing equations for $0 \le x < \pi/$.	

(i) $6 \sin^2 x - \cos x - 4 = 0$ [5 marks] (ii) $\sqrt{3} \sin x + \cos x = 2$ [5 marks]

(c)

(b)

Show that, for $A \neq \pi/2$, sec $A - \tan A = \tan \left(\frac{\pi}{4} - \frac{A}{2}\right)$.

[6 marks]

Total 25 marks

000572/CAPE 2001

The complex number, z, is expressed in the form x + iy, where $x, y \in \mathbf{R}$.

Express the complex number, $\frac{z-1}{z+1}$, in a similar form.

The argument of the complex number, $\frac{z-1}{z+1}$, is $\frac{\pi}{4}$.

(i) Find the equation connecting x and y. [3 marks]

(ii) Show that the equation represents a circle, C.

(iii) Determine the centre and radius of C. [2 marks]

 $\mathbf{r}_1 = 3\mathbf{i}, \mathbf{r}_2 = \mathbf{i} + \mathbf{j}$ and $\mathbf{r}_3 = -4\mathbf{j}$ are three vectors and t is a scalar. **(b)** (i)

> Find the values of t such that the vector $t \mathbf{r}_1 + \mathbf{r}_2$ is perpendicular to the vector $t \mathbf{r}_2 + \mathbf{r}_3$.

> > [5 marks]

(ii) The position vectors of points A and B relative to the origin, O, are 4i + j and i + 7j respectively. The point, C, lies on AB such that AC : CB = 2 : 1. Find the position vector of C relative to O. [3 marks]

Determine cos AÔC. (iii)

[2 marks]

Total 25 marks

4.

(a)

[7 marks]

[3 marks]

SECTION C (MODULE 1.3)

Answer BOTH questions.

- (a) Using differentiation, determine the range of real values of x for which the function $f: x \rightarrow 12 + 6x^2 x^3$ is decreasing. [5 marks]
- (b) Differentiate x^3 with respect to x from first principles. [6 marks]
- (c) A farmer plans to construct an enclosure for his sheep, making use of one side of a barn that is 150 m in length. Using 500 m of fencing material, the farmer will build a fence QRSTP which, along with the existing barn wall, PQ, will form a rectangular enclosure PRST.

Let the length of QR be x metres. Simplifying your answers where possible, find expressions in terms of x for

(i)	the length of TS	[1 mark]
(ii)	the length of RS	[4 marks]
(iii)	the area, A, of PRST	[2 marks]
(iv)	the stationary value of x and show that it is a maximum	[5 marks]
(v)	the maximum area of the sheep enclosure.	[2 marks]

Total 25 marks

000572/CAPE 2001

5.

(a) Calculate the volume generated when the finite region in the first quadrant bounded by the curve, $y = 2x^2$, the y-axis and the line y = 2 is rotated completely about the y-axis.

- 7 -

[6 marks]

- (b) The region, R, is bounded by the curve $y = x^2 + 1$, the x-axis, and the lines x = 0 and x = 2.
 - (i) Calculate the area of R.

[5 marks]

- (ii) The area of R is estimated using the trapezium rule with 2 intervals of equal width. Show that this trapezium rule estimate differs by $\frac{1}{3}$ from the exact value for the area of R found in (b)(i). [5 marks]
- (iii) On a carefully labelled sketch of $y = x^2 + 1$, shade in the 2 trapezia which are used to estimate the area of R. [4 marks]
- (iv) Another approximation for the area of R is obtained using 2 trapezia of unequal width. The first trapezium has width, h, and the second trapezium width, (2 h) with the three ordinates occurring where x = 0, x = h and x = 2. Show that the total area of these 2 trapezia of unequal widths is given by $(h^2 - 2h + 6)$. [5 marks]

Total 25 marks

END OF TEST

6.