FORM TP 20218

test code 000572

MAY 2000

CARIBBEAN EXAMINATIONS COUNCIL ADVANCED PROFICIENCY EXAMINATION

MATHEMATICS

UNIT 1 - PAPER 02

 $2\frac{1}{2}$ hours

13 JUNE 2000 (p.m.)

This examination paper consists of THREE sections: Module 1.1, Module 1.2, and Module 1.3.

Each section consists of 2 questions. The maximum mark for each section is 50. The maximum mark for this examination is 150. This examination paper consists of 5 pages.

INSTRUCTIONS TO CANDIDATES

1. DO NOT open this examination paper until instructed to do so.

- 2. Answer ALL questions from the THREE sections.
- 3. Unless otherwise stated in the question, all numerical answers MUST be given exactly OR to three significant figures as appropriate.

Examination materials

Mathematical formulae and tables Electronic calculator Ruler and compass

> Copyright © 1999 Caribbean Examinations Council All rights reserved.

000572/CAPE 2000

SECTION I (MODULE 1.1)

- 2 -

Answer BOTH questions.

(a) The straight line y = 10 - 3x cuts the circle $x^2 + y^2 + 2x - 16y = 0$ at the points, A and B. Given that A lies in the first quadrant and B lies in the second quadrant, find the coordinates of A and B. [9 marks]

The diagram above, not drawn to scale, shows a semicircle, PQR, with PR as diameter, O as centre and radius, r cm. The angle POQ = θ radians, $0 < \theta < \frac{\pi}{2}$.

 S_1 is the segment of the circle bounded by the chord, PQ, and S_2 is the segment of the circle bounded by the chord, QR.

Write down, in terms of θ and r, an expression for

(i)	the area of S ₁	[3 marks]	
(ii)	the area of S ₂ .	[4 marks]	
(iii)	Given that the area of S_2 is three times the area of S_1 , show that		
	$4\theta = \pi + 2\sin\theta.$	[4 marks]	
(iv)	Show that when $r = 6$, $\theta = \frac{\pi}{3}$, the area of triangle PQR = $18\sqrt{3}$.	[5 marks]	
	Total 25 marks		

GO ON TO THE NEXT PAGE

000572/CAPE 2000

1.

(b)

The function, f, is defined by

 $f: x \rightarrow x^2 - 2x + 3, \dot{x} \in \mathbb{R}, x \ge 1.$

- 3 -

(i)	State the range of f.	[3 marks]
(ii)	Sketch the graph of f.	[3 marks]
(iii)	Explain why the inverse function f^{-1} of f exists.	[3 marks]
(iv)	State the domain of f^{-1} .	[2 marks]
(v)	Sketch f^{-1} on the same diagram as f .	[4 marks]

(b) The function, g, is defined by

$$g: x \to x^2, x \in \mathbb{R}, x \ge 0$$

State clearly the transformation which maps g onto f. [4 marks]

(c) The function, h, is given by

$$h: x \to \frac{1}{x}, x \in \mathbb{R}, x \neq 0.$$

(i) Find an expression for f(h(x)).
(ii) Write down the range for the function f(h(x)).
[3 marks]

GO ON TO THE NEXT PAGE

2.

(a)

000572/CAPE 2000

SECTION 2 (MODULE 1.2)

- 4 -

Answer BOTH questions.

3.	(a) (i)	Express the complex number $z = \frac{11-2i}{3+4i}$ in the form $a + ib$, where a real numbers.	and b are [4 marks]
	(ii)	Hence, express z^2 and iz in a similar form.	[3 marks]
	(iii)	Find the modulus and principal value of the argument of z , where $-\pi$	<arg z="" π.<br="" ≤="">[3 marks]</arg>
	(iv)	Find the exact distance between the points on the Argand diagram repr z^2 and iz .	esented by [3 marks]
	(b) (i)	Find the cartesian equation of the curve, C, with parametric $x = 3 + 5 \sin \theta$, $y = 4 + 5 \cos \theta$, where $0 \le \theta \le 2\pi$.	equations [4 marks]
	(ii)	Describe the curve, C, in detail.	[3 marks]
	(iii)	Find the equations of the tangent and normal to the curve, C, at the p by $\theta = 0$.	ooint given [5 marks]
•		Total	25 marks
4.	(a) (i)	Express $\cos 4\theta$ in terms of $\cos 2\theta$.	[2 marks]

(ii) Hence, solve the equation

 $\cos 4\theta + 3\cos 2\theta - 1 = 0,$

for $0 < \theta < \pi$.

[10 marks]

(b) The diagram below shows a parallelogram, OABC, whose diagonals intersect at D.

The position vectors of A and C relative to O are -4i + 7j and 3i + 4j respectively.

- (i) Determine a unit vector in the direction of OC. [3 marks]
- (ii) Find, by calculation, the position vector of D. [5 marks]
- (iii) The point, E, which lies within the parallelogram, has position vector $(-8 \sin^2 \theta)\mathbf{i} + (6 6 \cos^2 \theta)\mathbf{j}$. Show that OE and OC are perpendicular.

[5 marks]

Total 25 marks

GO ON TO THE NEXT PAGE

• ž

000572/CAPE 2000

SECTION 3 (MODULE 1.3)

Answer BOTH questions.

(a)

5.

Let the area under the curve y = f(x) represented by $\int_{a}^{b} f(x) dx$ be divided into *n* strips, each of width *d* units so that each strip is approximately a trapezium. With the aid of a diagram, show that for n = 4,

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} d \left[y_{0} + 2y_{1} + 2y_{2} + 2y_{3} + y_{4} \right],$$

where $y_{0} = f(a), y_{1} = f(a + d), \dots, y_{4} = f(a + 4d).$

(b)

(i) The length, L, of a rod decreases at the rate of $\frac{1}{2} - \frac{t}{1+t^2}$ metres per second. It was 10 metres long at time t = 0. Write down an appropriate differential equation connecting the length of the rod and the rate of decrease at time, t. Hence, derive an expression for L. [8 marks]

 (ii) Evaluate the length, L, of the rod using the trapezium rule for five ordinates and strips of length 1 unit. [7 marks]

(iii) Find the time at which the rate of decrease vanishes. [2 marks]

(iv) Show that the rate of decrease is never negative. [2 marks]

Total 25 marks

[6 marks]

6. The function, h, is given by

 $h(x) = x^3 - 3x + 2, x \in \mathbb{R}.$

(a)	Find	the values of x for which $h(x) = 0$.	i de la companya de	[5 marks]		
(b)	Find	Find the stationary points of h.				
(c)	Dete	ermine the value(s) of x where h has				
	(i)	a local maximum		[2 marks]		
	(11)	a local minimum		(7 marke)		

(d) Using the above, and any other information, sketch the graph of h. [5 marks]

(e) Find the total area enclosed between the curve, the x-axis and the values x = -2 and x = 2. [5 marks]

Total 25 marks

END OF TEST

000572/CAPE/2000